Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam January 2016: Problem 2 Solution

Exercise. Let [a, b] be a (bounded) interval of \mathbb{R} and let m be Lebesgue measure. Let M be a positive real number and let f_1, f_2, \ldots be a sequence of measurable functions on [a, b] for which $\int_a^b |f_n| dm \leq M$ for every n. Assume that $f_n(x) \to f(x)$ as $n \to \infty$ for m-almost every x.

(a) State Fatou's lemma.

Solution.
<u>Fatou's Lemma</u> : If $\{f_n\}$ is any sequence in L^+ , then
$\int (\liminf f_n) \le \liminf \int f_n$

(b) Show that $\int_a^b |f| dm \le M$.

(c) Suppose that $||f_n - f_k||_1 \to 0$. Prove for every $\epsilon > 0$ there exists $\delta > 0$ such that if $A \subset [a, b]$ is *m*-measurable and $m(A) \leq \delta$, then $\int_A |f_n| dm \leq \epsilon$ for all *n*.

Solution.

Let $\epsilon > 0$. By part (b), $f \in L^1$. $\implies \exists \delta_0 \text{ s.t. if } m(A) < \delta_0 \text{ for measurable subset } A \subset [a, b]$

$$\int_A |f| dm \le \frac{\epsilon}{2}$$

Since $||f_n - f||_1 \to 0$ as $n \to \infty$, $\exists N \in N$ s.t. $\forall n \ge N$,

$$\int |f_n(x) - f(x)| dm \le \frac{\epsilon}{2}$$

Since $f_n \in L^1$, $\exists \delta_m > 0$ s.t. if $m(A) < \delta_m$ for measurable subset $A \subset [a, b]$

$$\int_A |f_n| dm \le \epsilon$$

Let $\delta = \min\{d_0, \dots, d_N\} \ge 0$. We have that for all measurable subsets $A \subset [a, b]$ with $m(A) < \delta$ $\int_A |f_n| dm \le \int_A |f_n - f| dm + \int_A |f| dm \le \epsilon$