Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam
 January 2016: Problem 2 Solution

Exercise. Let $[a, b]$ be a (bounded) interval of \mathbb{R} and let m be Lebesgue measure. Let M be a positive real number and let f_{1}, f_{2}, \ldots be a sequence of measurable functions on $[a, b]$ for which $\int_{a}^{b}\left|f_{n}\right| d m \leq M$ for every n. Assume that $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for m-almost every x.
(a) State Fatou's lemma.

Solution.

Fatou's Lemma: If $\left\{f_{n}\right\}$ is any sequence in L^{+}, then

$$
\int\left(\lim \inf f_{n}\right) \leq \liminf \int f_{n}
$$

(b) Show that $\int_{a}^{b}|f| d m \leq M$.

Solution.

Since f_{1}, f_{2}, \ldots measurable, so are $\left|f_{1}\right|,\left|f_{2}\right|, \ldots$ $\Longrightarrow\left\{\left|f_{n}\right|\right\} \in L^{+}$

$$
\begin{aligned}
& \int_{a}^{b}\left|f_{n}\right| d m \leq M \quad \text { for all } n \\
& \Longrightarrow \quad \limsup \int_{a}^{b}\left|f_{n}\right| d m \leq M \\
& \text { And } \quad \liminf \left|f_{n}\right|=\lim \left|f_{n}\right|=|f| \\
& \Longrightarrow \quad \int_{a}^{b}|f| d m=\int_{a}^{b} \liminf \left|f_{n}\right| d m \\
& \leq \liminf \int_{a}^{b}\left|f_{n}\right| d m, \quad \text { by Fatou's Lemma } \\
& \leq M
\end{aligned}
$$

(c) Suppose that $\left\|f_{n}-f_{k}\right\|_{1} \rightarrow 0$. Prove for every $\epsilon>0$ there exists $\delta>0$ such that if $A \subset[a, b]$ is m-measurable and $m(A) \leq \delta$, then $\int_{A}\left|f_{n}\right| d m \leq \epsilon$ for all n.

Solution.

Let $\epsilon>0$. By part (b), $f \in L^{1}$.
$\Longrightarrow \exists \delta_{0}$ s.t. if $m(A)<\delta_{0}$ for measurable subset $A \subset[a, b]$

$$
\int_{A}|f| d m \leq \frac{\epsilon}{2}
$$

Since $\left\|f_{n}-f\right\|_{1} \rightarrow 0$ as $n \rightarrow \infty, \exists N \in N$ s.t. $\forall n \geq N$,

$$
\int\left|f_{n}(x)-f(x)\right| d m \leq \frac{\epsilon}{2}
$$

Since $f_{n} \in L^{1}, \exists \delta_{m}>0$ s.t. if $m(A)<\delta_{m}$ for measurable subset $A \subset[a, b]$

$$
\int_{A}\left|f_{n}\right| d m \leq \epsilon
$$

Let $\delta=\min \left\{d_{0}, \ldots, d_{N}\right\} \geq 0$. We have that for all measurable subsets $A \subset[a, b]$ with $m(A)<\delta$

$$
\int_{A}\left|f_{n}\right| d m \leq \int_{A}\left|f_{n}-f\right| d m+\int_{A}|f| d m \leq \epsilon
$$

